Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment.
نویسندگان
چکیده
Although vast areas in tropical regions have weathered soils with low potassium (K) levels, little is known about the effects of K supply on the photosynthetic physiology of trees. This study assessed the effects of K and sodium (Na) supply on the diffusional and biochemical limitations to photosynthesis in Eucalyptus grandis leaves. A field experiment comparing treatments receiving K (+K) or Na (+Na) with a control treatment (C) was set up in a K-deficient soil. The net CO2 assimilation rates were twice as high in +K and 1.6 times higher in +Na than in the C as a result of lower stomatal and mesophyll resistance to CO2 diffusion and higher photosynthetic capacity. The starch content was higher and soluble sugar was lower in +K than in C and +Na, suggesting that K starvation disturbed carbon storage and transport. The specific leaf area, leaf thickness, parenchyma thickness, stomatal size and intercellular air spaces increased in +K and +Na compared to C. Nitrogen and chlorophyll concentrations were also higher in +K and +Na than in C. These results suggest a strong relationship between the K and Na supply to E. grandis trees and the functional and structural limitations to CO2 assimilation rates.
منابع مشابه
Water relations, pigment stabilization, photosynthetic abilities and growth improvement in salt stressed rice plants treated with exogenous potassium nitrate application
Potassium is a major nutrient which may play an important role in many processes such as ion homeostasis in plant cells and osmotic adjustment of guard cells during stomatal opening and closing. Pathumthani 1 (PT1) rice has been reported as being a salt sensitive cultivar and has been selected as a model plant in this study to investigate the possibility of improving the osmotic potential, pigm...
متن کاملEffects of Drought Stress on Some Anatomical Characteristics of Barley Leaves
In this research, effect of drought stress on leaf characteristics was investigated in the experimental field of Miandoab Azad University, Iran using four facultative barley cultivars. Two separate experiments were conducted in pot and field conditions. In both experiments a factorial arrangement was used and the treatments were completely randomized in four replications. In each experiment ha...
متن کاملMitochondrial iron-sulfur cluster genes in Eucalyptus
Iron-sulfur [Fe-S] clusters are prosthetic groups required to maintain life processes including respiration, photosynthesis, metabolic reactions, sensing, signaling,and gene regulation. In plants the biogenesis of Fe-S proteins is compartmentalized and adapted to specific needs of the eukaryotic and photosynthetic cell. Although critical to so many fundamental metabolic pathways and drastically...
متن کاملGrowth characteristics, photosynthetic pigments content and phenolic compounds content in the almond (A. scoparia and A. eburnea) exposed to static magnetic field
Despite the numerous studies on the effect of the magnetic field on plants, the exact mechanism of these effects has not yet been determined. The aim of this study was to compare the effect of magnetic field on growth and photosynthetic characteristics of two almond species (Amygdalus scoparia and A. eburnea). For this purpose, 21-day-old almond plants were affected by 10 mT static magnetic fie...
متن کاملA Newly Identified Passive Hyperaccumulator Eucalyptus grandis × E. urophylla under Manganese Stress
Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant, cell & environment
دوره 37 1 شماره
صفحات -
تاریخ انتشار 2014